

Rust Packaging Tutorial
@ Nest with Fedora 2022

Rust SIG / FPC / FESCo

decathorpe@gmail.com

decathorpe@mastodon.social

@decathorpe

decathorpe

@decathorpe:fedora.im

decathorpe.com

Fabio Valentini

● Anatomy of Rust crates

● Mapping Cargo metadata to equivalent RPM concepts:
○ Name, Version, Summary, License, %description
○ Features & Optional Dependencies
○ BuildRequires, Requires, Provides

● Mapping Cargo SemVer to RPM Version requirements

Roadmap (Pt. 1/2): Introduction

● Creating a new Rust package from scratch

● Updating an existing Rust package that can be updated
independently

● Packaging bindings for system libraries
(for example, bindings for system “libcurl”)

● Handling of multi-crate / multi-package updates

● Creating “Compat” packages for older crate versions

● etc. (coverage depends on time constraints)

Roadmap (Pt. 2/2): Real-world examples

The standard Fedora packaging toolkit plus some additional
tools will be required to follow the tutorial:

● fedora-packager: rpm-build, mock, fedpkg, etc.

● rust2rpm (v22 is recommended):
Our tool for generating RPM spec files for Rust crates.

● rpmautospec:
New Rust packages default to using rpmautospec, and
existing packages are being converted.

Prerequisites

Introduction to Rust Packaging

 What happens to Rust crates in RPM’s build phases?

● %prep
unpack .crate file (%autosetup) and set up local build environment for
cargo (%cargo_prep)

● %generate_buildrequires
generate BuildRequires from Cargo.toml according to enabled
feature flags and taking into account whether tests are enabled
(%cargo_generate_buildrequires)

● %build
compile crate with specified feature flags (%cargo_build)

● %install
install crate sources to the buildroot and install binaries to
%{buildroot}%{_bindir} (%cargo_install)

● %check
compile unit tests, integration tests, and doctests, and run them if
tests are enabled (%cargo_test)

 Contents of .crate files

Mandatory contents:

● Cargo.toml (project metadata, dependencies, etc.)
● crate source code
● build.rs (build script – if necessary)

“Technically” optional contents:

● README file
● LICENSE files
● source code for tests, examples, benchmarks
● files that contain data for tests

 Cargo.toml

The [package] table contains project metadata. The following
values are interesting for generating RPM packages:

● name: maps to
rust-$name

● version: Translated
to RPM-compatible
Version string.

● description:
Used for Summary
and %description.

● license (SPDX):
Used to populate the
License tag.

The default (!) structure of a Rust crate looks like this:

● src/**.rs: source code and unit tests (can use private APIs;
compiled into a single test runner binary)

● src/lib.rs: entry point for libraries (if present)
● src/main.rs and src/bin/*.rs: applications (if present)

● tests/*.rs: integration tests (can only use public APIs;
compiled into separate test runners)

● examples/*.rs: example code (only compiled, but not
executed, when running tests)

● benches/*.rs: benchmark code (untouched except when
explicitly running benchmarks with cargo bench)

All aspects of this default layout can be overridden by explicit
settings in the project’s Cargo.toml file!

 Source code organization

Mapping crate version to RPM Version

cargo uses semantic versioning (SemVer) as the format for its version
strings, which can contain characters that are not valid in RPM
version strings. For example, pre-releases will be normalized by
rust2rpm and RPM generators:

1.0.0-alpha.1 (SemVer) ←→ 1.0.0~alpha.1 (RPM)

Additionally, SemVer allows arbitrary suffixes after a “+” character,
which should be stripped for RPM packages. This is often the case for
bindings to C libraries, where this suffix usually contains the version
of the bundled library:

0.4.56+curl-7.83.1 → 0.4.56

This information is not relevant for RPM packages, since we do not
build against the bundled version of those libraries, but instead
dynamically link to the shared library provided by the system.

Features and optional dependencies (1/2)

Rust crates can define a set of “features” and declare some of
their dependencies as “optional” (optional dependencies
implicitly also define a feature of the same name).

Features can, in turn, have a list of dependencies on other
features, or on optional dependencies. All crates implicitly
define an empty “default” feature unless it is explicitly specified
to have dependencies.

Features and optional dependencies (2/2)

Which features and / or optional dependencies are enabled can
affect functionality and behaviour (i.e. with conditional
compilation)!

Features and optional dependencies are mapped to RPM
subpackages by rust2rpm, and RPM dependency generators
ensure that dependencies between subpackages map to
feature dependencies from Cargo.toml.

Since the set of features and optional dependencies can
change with any new version of a crate, it is important to re-run
rust2rpm for new versions - to ensure the mapping between
optional dependencies / features and RPM subpackages stays
in sync!

Mapping crate dependencies to RPM (Build)Requires

rust2rpm generates RPM spec files which run a “test build”
during the %build phase to ensure that code that does not
compile will fail RPM builds.

For this purpose, all crate [dependencies] and
[build-dependencies] need to be available during the build,
as well. These are generated automatically by the
%cargo_generate_buildrequires macro, and also by the
dependency generator for the rust-$crate-devel package.

Mapping crate dependencies to RPM (Build)Requires

By default, packages generated by rust2rpm also run the test
suite of the packaged crate.

In this case, the BuildRequires generator will also include
[dev-dependencies], which define dependencies that are
needed to compile and run unit and integration tests.

These dependencies are not generated for the
rust-$crate-devel package, since they are not used at
build-time or runtime, but only when compiling and running
tests.

Mapping RPM packages to virtual Provides

In addition to dependencies (RPM Requires), the RPM
generators for Rust crates also generate virtual Provides for all
valid subpackages (i.e. they map to a feature or optional
dependency).

subpackage Provides

rust-foo-devel crate(foo) = %{version}-%{release}
rust-foo+default-devel crate(foo/default) = %{version}-%{release}
rust-foo+bar-devel crate(foo/bar) = %{version}-%{release}

These virtual Provides are what is referenced by the Requires
that are generated by dependency generators.

Mapping SemVer requirements to RPM (1/2)

Semantic Versioning provides syntax for “ranges” of versions
when specifying which version of a dependency is required,
and these also need to be mapped to RPM semantics.

foo = “0.1”
foo = “^0.1”
foo = “~0.1”

These expressions are all equivalent, and translate to this RPM
dependency expression:

(crate(foo/default) >= 0.1.0 with crate(foo/default) < 0.2.0~)

Mapping SemVer requirements to RPM (2/2)

For post-1.0-releases, the “~”-style is no longer equivalent, and
should not be used when building RPM packages in Fedora
(because it is a stronger requirement than what is provided by
SemVer compatibility guarantees).

foo = “1.1”
foo = “^1.1”

These expressions remain equivalent, and translate to this RPM
dependency:

(crate(foo/default) >= 1.1.0 with crate(foo/default) < 2.0.0~)

However, foo = “~1.1” maps to the following dependency:

(crate(foo/default) >= 1.1.0 with crate(foo/default) < 1.2.0~)

Putting everything together (1/2)

For this example crate, the
generated BuildRequires will
contain:

● rust-packaging (RPM
generators, etc.)

● cargo + rustc

If tests are enabled, an additional
BuildRequires on foo-test-data
will be generated:

[package]
name = “foo”
version = “1.0.1”

[dependencies.bar]
version = “1.0.2”
optional = true

[dev-dependencies.foo-test-data]
version = “0.1”

[features]
default = []
foobar = [“bar”]

BuildRequires: (crate(foo-test-data/default) >= 0.1.0 with crate(foo-test-data/default) < 0.2.0~)

Putting everything together (2/2)

For subpackages, RPM generator output
will look something like this:

● rust-foo-devel

Provides: crate(foo) = 1.0.1

● rust-foo+default-devel

Requires: crate(foo) = 1.0.1
Provides: crate(foo/default) = 1.0.1

● rust-foo+bar-devel

Requires: crate(foo) = 1.0.1
Requires: (crate(bar) > 1.0.2 with crate(bar) < 2.0.0~)
Provides: crate(foo/bar) = 1.0.1

● rust-foo+foobar-devel

Requires: crate(foo/bar) = 1.0.1
Provides: crate(foo/foobar) = 1.0.1

[package]
name = “foo”
version = “1.0.1”

[dependencies.bar]
version = “1.0.2”
optional = true

[dev-dependencies.foo-test-data]
version = “0.1”

[features]
default = []
foobar = [“bar”]

Real-World Examples (finally!)

If there are questions regarding Rust
Packaging for Fedora, many Rust SIG
members hang out on Matrix (or IRC).

We also have a dedicated mailing list.

The source code for rust2rpm and
RPM macros for Rust packaging are
hosted on pagure.io, where issues and
feature requests can be filed.

#rust:fedoraproject.im

#fedora-rust

rust@lists.fedoraproject.org

https://pagure.io/fedora-rust/rust2rpm

Getting help with Rust Packaging

mailto:rust@lists.fedoraproject.org
https://pagure.io/fedora-rust/rust2rpm

